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Stern-Gerlach magnets are used to magnetically separate a beam of atoms or atom clusters. The design is difficult since both
the magnetic field gradient and its homogeneity should be maximized. This paper optimizes the pole-shoe shapes starting from a
reference geometry given in literature. The main contributions of the paper focus on reducing computational time and increasing
accuracy, which is achieved by replacing large parts of the model by a magnetic equivalent circuit and by introducing Isogeometric
Analysis (IGA) in the remaining field model part, respectively. A highly accurate evaluation of local field quantities is possible thanks
to the very smooth field representations, even across elements, offered by IGA’s spline-based framework.

Index Terms—Finite element analysis, magnetic circuits, magnetostatics, optimization.

I. INTRODUCTION

MAGNETIC separation of a beam of atoms or atom clus-
ters is done with a Stern-Gerlach magnet [1]. A deflec-

tion of the atoms or the cluster is measurable by combining a
highest possible magnetic field gradient with a sufficiently large
magnetic field aligning the magnetic moments. Besides two-
wire configurations, Rabi-type and sextupole Stern-Gerlach
magnets are common technology. In a Rabi-type magnet, two
ferromagnetic pole shoes are shaped such that the two-wire
field is reconstructed. A Stern-Gerlach magnet is designed such
that a magnetic field with a sufficiently homogeneous gradient
is obtained in a particular region in the gap between the poles.

This paper aims at a further optimization of the pole-
shoe shapes of the Rabi-type magnet described in [2] on the
basis of finite-element (FE) and Isogeometric Analysis (IGA)
models. The optimization procedure requires the solution of
numerous FE models. For reasons of computational efficiency,
the optimization is carried out using a 2D model. Two further
original improvements of the 2D FE model turned out to
be necessary to obtain both a sufficiently accurate as well
as a sufficiently fast model. The overall 2D FE model is
replaced by an IGA model of the pole region, coupled to a
magnetic equivalent circuit modelling the remaining parts of
the 2D cross-section. This approach promises fast and accurate
simulations while representing the Computer Aided Design
(CAD) geometry exactly.

II. MAGNET MODEL

The Stern-Gerlach magnet is operated with a DC current.
The magnetic field can be calculated sufficiently accurate
with the nonlinear magnetostatic formulation of the Maxwell’s
equation on the domain V , see Fig. 1

~∇×
(
µ−1( ~B) ~∇× ~A

)
= ~J (1)

Fig. 1. 3D model of the Stern-Gerlach magnet (CST EM STUDIO).

with µ the (nonlinear) permeability, ~B = ~∇× ~A the magnetic
flux density, ~A the magnetic vector potential and a current
density ~J . The magnetic field gradient in x-direction τ = d| ~B|

dx
is obtained from the solution for the magnetic vector potential
~A by post-processing. The average magnetic field gradient in
the beam area Vbeam is then calculated by

τav =
1

|Vbeam|

∫
Vbeam

τ(x, y) dV (2)

using numerical quadrature. The inhomogeneity of the mag-
netic field gradient is quantified by

ε =

√√√√ 1

|Vbeam|

∫
Vbeam

(
τ(x, y)

τav
− 1

)2

dV . (3)

The optimal situation is obtained when τav is maximal and ε
is minimal. The reference geometry of [2] is shown in Fig. 1.
The corresponding magnet is already in operation. The coils
and the outer yoke parts will not be replaced and, hence,
remain unaffected by the optimization. Moreover, changes to
the pole geometry may change the magnitude of the magnetic
flux but only marginally change the magnetic flux distribution



in the outer parts. This motivates considering only the pole
region of the Rabi-type magnet in the following. The partial
computational domain including the pole tips is denoted by Vp.

We propose to represent the outer part by a generalized
magnetic field-circuit coupling based on [3]. The partial model
Vp is embedded as a reluctance Rp together with a magneto-
motive force Fmmf representing the coil and a reluctance Ry

representing the outer yoke parts in a magnetic circuit. The
flux through the circuit is denoted by Φ. The total reluctance
is Rtot = Rp +Ry. Hopkinson’s law reads F = RtotΦ.

III. DISCRETIZATION AND FIELD-CIRCUIT COUPLING

Let the FE shape functions ~ωj of the reduced model be
numbered so that j ∈ {1, . . . ,M} are associated with edges
inside Vp and j ∈ {M + 1, N} associated with edges at Sp :=
∂Vp. The magnetic vector potential is discretized by

~Ap(~x) =

M∑
j=1

aj~ωj + Φ~χ , (4)

where ~χ|Sp
:=

~A?

Φ?
|Sp

with ~A?, Φ? taken from solving (1) on
the original domain V and continued into the interior of Vp.
The weighted residual approach leads to Kaaa+KabΦ = . . .,
where Kaa ∈ RM×M is the usual stiffness matrix and

(Kab)i1 =

∫
Vp

µ−1~∇× ~ωi · ~∇× ~χdV, (5)

where i = 1, 2, . . . ,M . An additional equation feedbacks
the magnetomotive force of the partial model to the external
circuit. The magnetomotive force of Vp is calculated by

Fp =

∫
S̃p

~H · d~s =

∫
S̃p

(
µ−1~∇× ~A

)
· d~s , (6)

where S̃p is an adequate part of Sp. Introducing (4) into (6)
and integrating by part leads to Fp = Kbaa + RpΦ where
Kba ∈ R1×M can be interpreted as a weighting in a Petrov-
Galerkin framework by a new test function ~χ′. Finally, the
field-circuit coupled system of equations is[

Kaa Kab

Kba Rp +Ry

][
a

Φ

]
=

[
0

Fmmf

]
. (7)

IV. SIMULATION AND OPTIMIZATION

IGA is a rather new technique for the discretization of partial
differential equations. It can be understood as a generalization
of the standard FEM method, however with more regular basis
functions employed for the approximation process [4]. The ge-
ometry mapping and the basis functions are described in terms
of traditional or non-uniform rational B-splines (NURBS)
[4], [5], [6]. Consequently the geometry is represented in
the language of CAD and this allows natural communication
with possible manufacturers of the pole tips. Secondly, highly
smooth solutions can be obtained while in classical FEM the
basis functions are typically limited to C0 across the element
boundaries. We use the software package GeoPDEs since curl-
conforming B-splines are provided and it supports a multipatch
framework; 3D generalization is also possible [4]. For use of
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Fig. 2. Optimized and original geometry of the pole of the magnet.

the partial model in GeoPDEs, the geometry is split in multiple
patches, each one discretized in the reference geometry [4].
To further speed up the simulations, the nonlinear satura-
tion is frozen, i.e., a constant but inhomogeneous reluctivity
ν = ν( ~B?(~x)) is used where ~B? is taken from the nonlinear
computation of the full model.

The cost function for the optimization should combine the
requirements for a high average magnetic field gradient τav

and a low inhomogeneity factor ε. The function is defined as

f(x, y, w) =
τw
|τav|

+ ε− τw
|τav|

ε, (8)

where x, y, w are the vectors of geometrical DOFs (x-
coordinates, y-coordinates, weights) of the control points. The
weighting by τw = 8 T/m ensures that all quantities are
approximately equally treated with a slight tendency to prefer
the minimization of the inhomogeneity factor. The goal of
the optimization is then to minimize (8). The pole geometry
was optimized using Matlab’s Optimization Toolbox. The opti-
mization procedure in GeoPDEs lasts about 6 hours. Building
and solving the equation system with field-circuit coupling in
GeoPDEs takes approximately half a minute. The optimized
and the reference geometry are compared in Fig. 2.
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